Abstract

Coastal freshwater wetlands (CFWs) are among the most understudied wetlands globally and are highly vulnerable to projected climate changes. To address CFW knowledge gaps in south-east Queensland, Australia, we surveyed the floristic composition and structure of wooded CFWs and explored variation in vegetation patterns in relation to selected environmental drivers. Understorey and shrub assemblages were surveyed using a cover-class scale and stem counts for tree species abundance. Vegetation structure attributes (stem density, basal area) were calculated from survey data. Redundancy analysis was used to investigate drivers of vegetation structure and the species composition of each stratum. Vegetation structure patterns were associated with gradients of rainfall, soil moisture, salinity and pH. Understorey species composition was associated with wallum wetland species, native perennial grass and herb species, and vegetation patterns of the canopy. Common CFW species, namely Melaleuca quinquenervia and Eucalyptus tereticornis, dominated tree assemblage variation. Overall, CFW vegetation exhibited strong associations with gradients of salinity, rainfall, groundwater dependence and disturbance. Alterations to key drivers of vegetation pattern with future climate changes are likely to markedly influence the composition, structure and function of CFW vegetation communities. Action is therefore required to maintain CFW vegetation communities and ecological function in these diverse and unique wetland systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call