Abstract
The spatial variability of throughfall deposition of H +, Ca 2+, Mg 2+, Na +, K +, Cl −, NO 3 −, NH 4 +, O 4 2− to a Norway spruce ( Picea abies (L.) Karst.) forest was intensively examined during the period October 1986 to October 1987. Large systematic spatial variability of the atmospheric deposition within the forest was observed. The flux of throughfall water was higher away from the trunk compared to the flux close to the trunk. In contrast to this, the deposition of all substances was considerably higher close to the trunk compared to the deposition at the periphery of the canopy. A linear decrease in deposition as a function of the distance from the nearest tree trunk was found. Further, the deposition varied quite dramatically between trees according to their size. The observed spatial variability in throughfall may be due to variabilities in the processes taking part in altering the distribution and composition of the precipitated water as it moves through the canopy. The influence of these processes of precipitation, wash-off, dry deposition and canopy exchange is discussed, and it is found that both increased dry deposition and canopy exchange in the tree tops contribute to the higher solute fluxes found close to the tree trunk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.