Abstract

Exploring the trophic pathway of organic matter within the Mauguio lagoon (southern France, western Mediterranean), we found spatial differences in the isotopic composition (both δ13C and δ15N values) of organic matter sources (primary producers, particulate and sedimentary organic matter), which were mirrored in the upper trophic levels (invertebrates and fish). On average, δ13C was heavier by about 1.5–2‰ in the location under marine influence than in the sites influenced by freshwater discharge. The opposite trend was found for δ15N, which attained maximum values in the north-central zone influenced by freshwater delivery. For both C and N stable isotope ratios, the highest spatial variability was found in organic matter sources (2–3‰), while invertebrates and fish exhibited less variability (\~1–2‰). The differences observed may be related to both anthropogenic (wastewater input) and natural (marine vs. terrestrial inputs) factors. Discharge of wastewater, which affects the innermost location, generally determines an increase in the relative abundance of 15N. In addition, terrestrially derived nutrients and organic matter, which also affect the innermost location, are known to determine a shift towards 13C-depleted values. Our results substantiate the finding that the analysis of carbon and nitrogen stable isotopes can help in elucidating origin and fate of organic matter in coastal lagoons, which are characterised by a great spatial variability and complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call