Abstract

The understanding of the structure of the spatial variability of soil surface hydraulic properties on steep slopes is important for modeling infiltration and runoff processes. The objective of this study was to investigate the spatial variability of these properties on a steep slope of the Loess Plateau in northwest China. A 9600 m² area was systematically sampled in a grid of 106 points spaced 10 m x 10 m. Hydraulic properties were determined with a disc infiltrometer under multiple pressure heads (-15, -9, -6, -3, 0 cm) at each sample point. Classical and geo-statistical methods were used for data analysis. The results indicated that the variation of Gardner's a and hydraulic conductivities at all applied pressure heads was moderate and the heterogeneity for hydraulic conductivities increased as the applied pressure head increased. Along the slope, hydraulic conductivities generally decreased downwards, while the Gardner's a fluctuated slightly. The Gardner's a of the shaded aspect of the slope was greater than that of the sunny aspect. The hydraulic conductivities of the shaded aspect were greater at higher pressure heads as compared to the sunny aspect, but lower than those of the sunny aspect at lower pressure heads. Correlation analysis showed a negative correlation between hydraulic conductivity and soil organic matter and clay (<0.01 mm) contents. Hydraulic conductivities at pressure heads of -3, -6, -9, -15 cm varied across the slope and their spatial dependence increased as the pressure head declined. The heterogeneity and spatial dependence of hydraulic properties were larger for the areas with shaded aspect as compared to the sunny aspect, however, as pressure decreased they showed a progressively increasing spatial structure, and their spatial structure behaved increasingly similar in both the shaded and sunny aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call