Abstract
Statistical analysis and interpretation of heterogeneous sediment hydraulic properties is important to produce reliable forecasts of water and solute transport dynamics in the unsaturated zone. Most field characterizations to date have focused on the shallow 2‐m root zone. We characterized the geologic and hydraulic properties of a 16‐m‐deep, alluvial vadose zone consisting of unconsolidated sediments typical of the alluvial fans of the eastern San Joaquin Valley, California. The thickness of individual beds varies from <5 cm for some clayey and silty floodplain material to >2.5 m for large sandy deposits associated with buried stream channels. Eight major geologic units (lithofacies) have been identified at the site. Unsaturated hydraulic properties were obtained from multistep outflow experiments on nearly 100 sediment cores. Multivariate analysis of variance and post hoc testing show that lithofacies and other visual‐ and texture‐based sediment classifications explain a significant amount of the spatial variability of hydraulic properties within the unsaturated zone. Geostatistical analysis of hydraulic parameters show spatial continuity of within‐lithofacies variability in the horizontal direction in the range of 5 to 8 m, which is approximately an order of magnitude larger than spatial continuity in the vertical direction. Low nugget/sill ratios suggest that 1‐ to 10‐m sampling intervals are adequate for detection of horizontal spatial structure. The existence of thin clay or silt layers within lithofacies units results in only moderate spatial continuity in the vertical direction, however, suggesting inadequate sampling frequency for hydraulic parameter variogram development in that direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.