Abstract

The primary purpose of the aircraft remote sensing component of the North Atlantic Bloom Experiment (NABE) was to: (1) quantify spatial patterns of surface Chl a variability and co-variability with temperature (T) within the NABE study regions along the 20°W meridian near 48 and 60°N; and (2) determine if the major NABE ship and mooring locations were representative of surrounding ocean waters with respect to large-scale distributions of surface Chl a and T. The sampling platform was a NASA P-3 aircraft equipped with the Airborne Oceanographic Lidar (AOL) system, which measures laser-induced Chl a fluorescence (LICF), upwelling spectral radiance and surface temperature (T). Results collected during nine AOL missions conducted between 26 April and 3 June show considerable mesoscale variability in LICF and T. Spatial statistics (structure functions) showed that the dominant scales of LICF and T were significantly correlated in the range 10–290 km. Spectral analysis of the results of long flight lines showed spectral slopes averaging −2 for both LICF and T for spatial scales in the range 1.2–50 km. As for previous investigations of this type, we interpret the correlation between LICF and T as evidence that physical processes such as upwelling and mixing are dominant processes affecting spatial variations in Chl a distributions in the North Atlantic during the period of our sampling. The minimum dominant T and LICF spatial scales (ca 10 km) we determined from structure functions are similar to minimum scales predicted from models (Woods, 1988, In: Toward a theory on biological-physical interactions in the world ocean, Kluwer Academic, Boston, pp. 7–30) of upwelling induced by vortex contraction on the anticyclonic side of mesoscale jets. The NABE experiment was planned with the explicit assumption that major biological and chemical gradients are in the north-south direction in the northeast Atlantic. Our results support this assumption, and we observed no large-scale (>200 km), east-to-west trends in surface Chl a in the two principal study areas. Our analyses show that satellite ocean color scanners with pixel resolution of 4 × 4 km will generally detect the major spatial patterns of Chl a distributions (at scales > 0.3 km), in near surface waters during the spring bloom in the North Atlantic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call