Abstract

Visual processing varies substantially across individuals, and prior work has shown significant individual differences in fundamental processes such as spatial localization. For example, when asked to report the location of a briefly flashed target in the periphery, different observers systematically misperceive its location in an idiosyncratic manner, showing different patterns of reproduction error across visual field locations. In this study, we tested whether these individual differences may propagate to other stages of visual processing, affecting the strength of visual crowding, which depends on the spacing between objects in the periphery. We, therefore, investigated the relationship between observers' idiosyncratic biases in localization and the strength of crowding to determine whether these spatial biases limit peripheral object recognition. To examine this relationship, we measured the strength of crowding at 12 locations at 8° eccentricity, in addition to the perceived spacing between pairs of Gaussian patches at these same locations. These measurements show an association between variability in crowding strength and perceived spacing at the same visual field locations: at locations where a participant experienced stronger crowding, their perceived spacing was smaller, and vice versa. We demonstrate that spatial heterogeneity in perceived spacing affects observers' ability to recognize objects in the periphery. Our results support the idea that variability in both spatial sensitivity and bias contribute to variability in the strength of crowding and bolster the account that variability in spatial coding may propagate across multiple stages of visual processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call