Abstract

Topsoil samples (0–20 cm) (n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.