Abstract

Advances in GIS are increasingly focused on providing more sophisticated spatial analytical capabilities. Much of this work assumes no attribute and positional uncertainties in data. While there has been considerable research devoted to enhanced data creation techniques and metadata associated with error and uncertainty, little has been done to characterize or better understand error/uncertainty impacts in spatial analysis. This paper explores issues associated with the detection and significance of clusters under known positional uncertainty. Multiple equally likely data instances in which positional certainty is not assumed are assessed for existence of clusters. Results suggest that identified patterns can vary significantly when there is error or uncertainty in spatial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.