Abstract

The turning bands method (TBM) is a commonly used method of simulation for large Gaussian fields, its O(N) complexity being unsurpassed (N denotes the number of points to simulate). TBM can be implemented either in the spatial or the spectral domains. In the multivariate anisotropic case, spatial versions of TBM are currently available only for the linear model of coregionalization (LMC). For anisotropic non-LMC with symmetrical covariances only the spectral version is currently available. The spectral domain approach can be slow in the case of non-differentiable covariances due to the numerous frequencies to sample. Here a derivation of the equations is provided for simulating the anisotropic non-LMC directly in the spatial domain and the method is illustrated with two synthetic examples. The approach allows the specification of many different direct and cross-covariance components, each with possibly different geometric anisotropies and different model types. The complexity of the new multivariate approach remains O(N). Hence, a case of two variables defining an anisotropic non-LMC is simulated over one billion points in less than one hour on a desktop computer. These results help enlarge the scope of application of the TBM. The method can be easily implemented in any existing TBM program.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call