Abstract
Abstract Although there is a well‐known association between tree cover and soil texture in savannahs, the hydrological drivers of tree cover variation have not been systematically explored, particularly in parallel with factors such as fire, herbivory, and tree–grass interactions. The relationship between hydrological factors and tree cover is important for resolving the relative contribution of bottom‐up versus top‐down factors in structuring savannah vegetation. We quantified soil moisture dynamics across eight 1‐km transects spanning tree cover gradients from open to woody savannah in Serengeti National Park in Tanzania using soil moisture sensors coupled with dataloggers. We mapped tree cover at two spatial scales through supervised classification of high‐resolution satellite imagery. We simultaneously produced water retention curves in open and woody habitats within each transect to compare soil hydrological properties and to convert volumetric water content (θ) from dataloggers to plant‐available water over the course of an annual cycle. We also quantified grass biomass at 100 locations per transect, estimated fire frequency from MODIS satellite data, and quantified herbivore occupancy with paired camera traps situated in open and woody habitats within each transect. We found a positive relationship between tree cover and soil moisture drainage rate, and found that open habitats had more negative water potentials than woody habitats for a given value of θ. In contrast, we found no evidence for a consistent relationship between grass biomass or fire frequency and tree cover. We found evidence for higher browser occupancy in woody than open habitats, but no habitat effects on herbivores as a group (browsers plus grazers), suggesting that herbivory is unlikely to be the dominant factor explaining variation in tree cover. Synthesis. Our results suggest that variation in tree cover is partly driven by hydrological (edaphic) factors unrelated to fire, herbivory, tree–grass interactions or mean annual precipitation at these spatial scales in Serengeti. We contrast our findings with previous work attributing tree cover shifts in Serengeti to precipitation gradients.
Full Text
Topics from this Paper
Open Habitats
Tree Cover
Variation In Tree Cover
Hydrological Factors
Tree Grass Interactions
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Ecological Monographs
Apr 26, 2022
New Phytologist
Jun 4, 2018
Remote Sensing
Jul 4, 2017
Agriculture, Ecosystems & Environment
Dec 1, 2015
Ostrich
Mar 1, 2005
Insect Conservation and Diversity
Feb 7, 2023
Sustainability
May 3, 2017
African Geographical Review
Mar 15, 2023
Plant Ecology & Diversity
Dec 1, 2013
Journal of Ecology
Jul 10, 2014
Global Ecology and Biogeography
Jan 2, 2018
Austral Ecology
Aug 28, 2009
Global Ecology and Biogeography
Oct 21, 2015
Mar 23, 2020
Journal of Ecology
Journal of Ecology
Nov 22, 2023
Journal of Ecology
Nov 22, 2023
Journal of Ecology
Nov 22, 2023
Journal of Ecology
Nov 21, 2023
Journal of Ecology
Nov 16, 2023
Journal of Ecology
Nov 16, 2023
Journal of Ecology
Nov 15, 2023
Journal of Ecology
Nov 6, 2023
Journal of Ecology
Nov 2, 2023