Abstract

Reference evapotranspiration ([Formula: see text]) is an important indicator for hydrometeorological change, which integrates atmospheric and surface conditions, and its downward trends have been reported in many regions over the past several decades. Cold regions constitute an important ecological barrier in China; however, few studies focus on change in [Formula: see text] in cold regions. Especially in the cold region of northeast China (CRNEC), as one of the national strategic grain bases, understanding spatial-temporal variations of [Formula: see text] is important for agriculture water management and ecological protection. This study selected the observations at 113 national meteorological stations located in CRNEC and evaluated the trends of [Formula: see text] and their driving factors from 1961 to 2017. Results indicate that annual [Formula: see text] increases from the northeast to the southwest of CRNEC and has an insignificant decreasing trend in the whole study period, in which 33 stations (29.2%) show significant decreasing trends and only 19 stations (16.8%) show significant increasing trends at the 95% confidence level. An abrupt change in [Formula: see text] data is detected from 1994. Reasons for this abrupt change in [Formula: see text] vary largely over the study areas. Analysis shows that wind speed and minimum air temperature are the two major factors that control the change of [Formula: see text] before 1994. It also shows that wind speed and actual vapor pressure are the two major controlling factors after 1994. We also found that [Formula: see text] shows a certain correlation with Pacific Decadal Oscillation and Western Pacific Index, but there is a significant correlation between meteorological factors and teleconnection factors related to [Formula: see text]. These findings will promote agricultural water management and improve water ecological protection in the CRNEC. We investigated changes in reference evapotranspiration relationships with atmospheric circulation and its attributions over the cold regions in northeast China during 1961 ~ 2017. The results indicate that the wind speed and minimum air temperature are the two major factors that control the change of ET0 before 1994, and wind speed and actual vapor pressure are the two major controlling factors after 1994. We also found that ET0 shows a certain correlation with Western Pacific Index in the whole period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.