Abstract

Particulate matter (PM) in urban riparian green spaces are undesirable for human participation in outdoor activities, especially PM2.5 and PM10. The PM deposition, dispersion and modification are influenced by various factors including vegetation, water bodies and meteorological conditions. This study aimed to investigate the impact of vegetation structures and the river’s presence on PM in riparian zones. The spatial-temporal variations of PM2.5 and PM10 concentrations in three riparian vegetation communities with different structures (open grassland (G), arbor-grass (AG) and arbor-shrub-grass (ASG) woodlands) were monitored under relatively stable environment. The removal percentages (RP) and ratios of PM2.5 and PM10 were calculated and compared to identify the removal effect of vegetation structures and the river’s presence. It is found that: (1) when the wind was static (hourly wind speed < 0.2 m/s), the RP was ranked as follows: G > AG > ASG. When the wind was mild (0.2 m/s < hourly wind speed < 2 m/s), the RP was ranked as follows: G > ASG > AG. Generally, the G had the best removal effect during the monitoring period; (2) the lowest RP occurred in the middle of the G (–3.4% for PM2.5, 1.8% for PM10) while the highest RP were found in middle of the AG and ASG, respectively (AG: 2.1% for PM2.5, 6.7% for PM10; ASG: 2.4% for PM2.5, 6.3% for PM10). Vegetation cover changed the way of natural deposition and dispersion; (3) compared with static periods, PM removal percentages were significantly reduced under mild wind conditions, and they were positively correlated with wind speed during the mild-wind period. Thus, a piecewise function was inferred between wind speed and PM removal percentage; (4) for all three communities, the 1 m-to-river PM2.5/PM10 ratio was significantly lower than that at 6 m and 11 m, even lower than that in the ambient atmosphere. The river likely promoted the hygroscopic growth of PM2.5 and the generation of larger-sized particles by coagulation effect. Based on these findings, open grassland space is preferred alongside rivers and space for outdoor activities is suggested under canopies in the middle of woodlands.

Highlights

  • /PM10 ratios within three riparian plant communities, this paper found that during the monitoring period

  • The negative removal percentage in the middle of the vegetation community indicted the limits of open grassland

  • The obstruction effect of trees and shrubs resulted in a negative removal percentage as well as a lower concentration in the shrubs resulted in a negative removal percentage as well as a lower concentration in the middle of the vegetation community

Read more

Summary

Introduction

Particulate matter (PM) exposure is an increasingly severe threat to public health and has been identified as a contributor to cardiovascular and respiratory diseases [1,2,3]. Short-term PM2.5 exposure is associated with increased all-cause mortality and respiratory diseases mortality [4]. Even relatively low concentrations of air pollutants can lead to high exposure risks [5]. Particulate pollution remains a serious environmental problem in China, especially PM2.5 pollution

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.