Abstract
AbstractChanges in snow cover over the Qinghai–Tibetan Plateau have attracted much attention in recent years owing to climate change. Because of the limitations of in situ observations, only a few studies have analyzed the dynamics of snow cover. Using observations from 103 meteorological stations across the Qinghai–Tibetan Plateau, this study investigated the spatial and temporal variability of snow depth and the number of snow-cover days. The results show a very weak negative trend for the snow depth and the number of snow-cover days in spring and winter from 1961 to 2010, but two different trends were found: an initial increase followed by a decrease. In summer and autumn, snow depth and the number of snow-cover days show a significant decreasing trend for most sites. The duration of snow cover exhibits a significant decreasing trend (−3.5 ± 1.2 days decade−1), which was jointly controlled by a later snow starting time (1.6 ± 0.8 days decade−1) and an earlier snow ending time (−1.9 ± 0.8 days decade−1) consistent with a response to climate change. This study highlights the competing effects of rising temperatures and changing precipitation, which remain an important challenge in understanding and interpreting the observed changes in snow depth and the number of snow-cover days for the Qinghai–Tibetan Plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.