Abstract

The fifth-generation (5 G) based vehicle-to-everything (V2X) communication is a promising technology to enhance both manned and unmanned driving systems. To this end, the 5 G V2X networks should satisfy stringent requirements on transmission reliability and delay for exchanging safety-critical messages (SCMs). A joint analysis of transmission reliability and delay in V2X communication networks is thus crucial, particularly in urban 5 G V2X networks. This was considered prohibitive due to the complicated spatial-temporal dynamics of V2X communications caused by interference, channel fading, as well as queueing and retransmission of SCMs. Moreover, urban 5 G V2X networks are typically deployed in a finite area, where locations of nodes are spatially correlated and cannot be conveniently modeled as Poisson point process (PPP). In this paper, we propose a novel binomial point process (BPP) based analytic framework for modeling the spatial-temporal dynamics of urban 5 G V2X communications and characterizing transmission reliability and delay of SCM exchange jointly. The presented framework captures not only the spatial distribution of interference and channel fading during uplink and downlink transmissions, but also the temporal dynamics associated with queueing and retransmissions of SCMs. Exploiting the stochastic geometry theory and queueing theory, closed-form expressions of transmission reliability and delay are derived, which are further validated using Monte Carlo simulations. Both the numerical and simulation results reveal complicated couplings between the transmission reliability and delay in different operation regimes. Nevertheless, the proposed analytical framework can accurately capture the reliability-delay relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.