Abstract
Global changes have led to significant changes in soil erosion on the Loess Plateau. Soil erosion leads to the degradation of land resources and a decline in soil fertility, adversely affecting agricultural production and the socioeconomic situation. Therefore, revealing the spatiotemporal evolution patterns of soil erosion in the Loess Plateau region and investigating the influencing factors that contribute to soil erosion are crucial for its management and restoration. In this study, the RUSLE monthly model and the Geodetector model were utilized to reveal the spatiotemporal trends of soil erosion in the Loess Plateau from 2000 to 2020 and to determine the dominant influencing factors in different periods. The main results are as follows: (1) From 2000 to 2020, the soil erosion in the Loess Plateau initially weakened and then intensified, indicating that precipitation and precipitation intensity have different effects on surface soil. (2) From 2000 to 2015, the area experiencing slight and mild erosion increased. This is attributed to the increase in vegetation coverage in the Loess Plateau region, which has alleviated soil erosion in the area. (3) From 2000 to 2020, zones of severe soil erosion were mainly located in the cities of Yan’an and Yulin and their surrounding areas. The gravity center of soil erosion shifted northwestward from Yan’an City overall, indicating an improvement in the soil erosion conditions in the Yan’an area. (4) The predominant level of soil erosion across different land-use types was slight erosion, accounting for over 40%. This may be a result of forestry ecological projects that effectively reduce soil loss. (5) In slope zones of 0–5°, slight erosion accounted for the largest area proportion. As the slope increased, the area proportion of severe and extremely severe erosion also increased. This is attributed to the protective role of vegetation on soil in gentle slope areas. (6) From 2000 to 2020, vegetation was the dominant single factor influencing the spatiotemporal changes in soil erosion, while the interactions between vegetation and land use had the largest explanatory power, indicating that changes in land-use types partially affect variations in vegetation coverage. Our research findings could provide important data support for soil erosion control and eco-environment restoration in the Loess Plateau region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.