Abstract

The generation of nitric oxide (NO) in Taxus cuspidata in immobilized support matrices and the potential role of NO as signal molecular in regulation of Taxol production were investigated. It was found that the immobilization induced a spatial and temporal-dependent NO burst in immobilized supported matrices. NO level reached the maximum in the central zone of immobilized supported matrices on day 20, which was more than twice compared with that in suspended cells. Further investigations showed that the phenylalanine ammonialyase (PAL) activity and Taxol production of the 20-day-old immobilized T. cuspidata cells increased by onefold and 11% after 4 h treatment with 20 μM NO donor (sodium nitroprusside), respectively. NO inhibitor N ω-nitro- l-arginine and NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde partially blocked PAL activity and Taxol accumulation in immobilized cells. These results suggest that NO plays a signal role in regulation of PAL activity and Taxol production in immobilized T. cuspidata cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.