Abstract

Abstract In optical scanning holography (OSH), the object is raster scanned by a heterodyne fringe pattern. The light scattered from the object is detected by a photodetector. Traditionally, the photo-electric signal is demodulated by a dual-channel lock-in amplifier (LIA) to extract a complex hologram. The use of LIA complicates the detection module of the system and increases the cost, especially when the heterodyne frequency is high. In this paper, an alternative demodulation method called a spatial–temporal demodulation technique (STDT) is studied. In STDT, the photo-electric temporal signal is directly digitized as scanning lines. The spectrum of each scanning line is band-pass filtered to remove the zeroth-order term and the complex conjugate term. Finally, a complex hologram is obtained from the filtered spectrum. The first merit of STDT is that the phase of the demodulated complex hologram is insensitive to the modulation error. Thus it is easily applied to the applications of particle holography. Besides, the bandwidth of the zeroth-order term in STDT is narrow, which allows the system to be operated in a wide range of heterodyne frequency. This feature enables STDT-based OSH to be applied in low-cost and high-speed dynamic holographic imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call