Abstract
Dynamic light scattering analysis has been demonstrated recently to be a promising tool for the assessment of structural changes taking place inside opaque tissue samples. Specifically, quantification of velocity and direction of cellular motion inside spheroids and organoids has attracted much attention as a potent indicator in personalized therapy research. Here, we propose a method for the quantitative extraction of cellular motion, velocity, and direction, by applying a concept of speckle spatial-temporal correlation dynamics. Numerical simulations and experimental results obtained on phantom and biological spheroids are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.