Abstract

Playing an important role in global warming and plant growth, relative humidity (RH) has profound impacts on production and living, and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area. However, information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited. This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method, and the path analysis was used to clarify the impact of temperature (T), precipitation (P), actual evapotranspiration (ETa), wind speed (W) and sunshine duration (S) on RH. The results demonstrated that climatic conditions in North Xinjiang (NXJ) was more humid than those in Hexi Corridor (HXC) and South Xinjiang (SXJ). RH had a less significant downtrend in NXJ than that in HXC, but an increasingly rising trend was observed in SXJ during the last five decades, implying that HXC and NXJ were under the process of droughts, while SXJ was getting wetter. There was a turning point for the trend of RH in Xinjiang, which occurred in 2000. Path analysis indicated that RH was negatively correlated to T, ETa, W and S, but it increased with increase of P. S, T and W had the greatest direct effects on RH in HXC, NXJ and SXJ, respectively. ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ, while T was the dominant factor in SXJ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.