Abstract

As one of the most important geographical units affected by global climate change, lakes are sensitive to climatic changes and are considered “indicators” of climate and the environment. In this study, changes in the spatial-temporal characteristics of the water levels of 204 global major lakes are systematically analyzed using satellite altimetry data (Hydroweb product) from 2002 to 2010. Additionally, the responses of the major global lake levels to climatic fluctuations are analyzed using Global Land Surface Assimilation System (GLDAS) data (temperature and precipitation). The results show that the change rates of most global lakes exceed 0, which means that the lake levels of these lakes are rising. The change rates of the lake levels are between −0.3~0.3 m/a, which indicates that the rate of change in the water-level of most lakes is not obvious. A few lakes have a particularly sharp change rate, between −5.84~−2 m/a or 0.7~1.87 m/a. Lakes with increasing levels are mainly located in the mountain and plateau regions, and the change rates in the coastal highlands are more evident. The global temperatures rise by a change rate of 0.0058 °C/a, while the global precipitation decreases by a change rate of −0.6697 mm/a. However, there are significant regional differences in both temperature and precipitation. In addition, the impact of precipitation on the water level of lakes is significant and straightforward, while the impact of temperature is more complex. A study of lake levels on a global scale would be quite useful for a better understanding of the impact which climate change has on surface water resources.

Highlights

  • Global environmental change, which is at the core of global climate change, has received considerable attention from governments since the 1980s [1]

  • The morphology and ecology of lakes have significantly changed over the past few decades, as they are affected by climate change and human activities [2]

  • Lakes are ranked according to the mass distribution map of the change rates of the lake levels (Figure 1)

Read more

Summary

Introduction

Global environmental change, which is at the core of global climate change, has received considerable attention from governments since the 1980s [1]. The morphology and ecology of lakes have significantly changed over the past few decades, as they are affected by climate change and human activities [2]. The world’s lake area accounts for approximately 1.8% of the Earth’s total land surface area, and there are up to 8 million lakes with areas greater than 1 hectare [3]. It is necessary to increase the investigation of global lakes and study the characteristics of lake areas and water levels in both time and space [5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call