Abstract

AbstractCorrection of atmospheric variables to remove systematic biases in global climate model (GCM) simulations before downscaling offers a means of improving climate simulation accuracy in climate change impact assessments. Various mathematical approaches have been used to correct the lateral and lower boundary conditions of regional climate models (RCMs). Most of these techniques correct only the magnitude of each variable individually over time without regard to spatial and multivariate bias. Here, we investigate how well an RCM is able to reproduce the dependence of an observed variable based on three aspects: temporal, spatial, and multivariate. Results show that the RCM simulations with univariate bias‐corrected GCM boundary conditions perform well in capturing both temporal and spatial dependence. However, all RCM simulations do not show improvement in the representation of dependence between variables, indicating the need for alternatives that correct systematic biases in multivariate dependence in both lateral and lower boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.