Abstract

Models describing relationships between landscape features and species distribution patterns often display inter-study inconsistencies. Identifying factors contributing to these inconsistencies is a vital step in clarifying the ecological importance of landscape features and synthesizing an effective knowledge base for use in conservation contexts. We examined the influence of several spatial, temporal, and life history assumptions on the outcomes of distribution versus landscape models (DLMs) relating wetland bird communities at 29 Massachusetts (USA) sites to independent urbanization, wetland, forest, and agricultural landscape gradients. We considered a bird specialization index as well as obligate and facultative species richness as response variables. Landscape gradients were quantified at 10 landscape extents (0–1000 m in 100 m increments) and three time periods (1971, 1985, 2005). Univariate models indicated that our specialization index showed: (1) the strongest response to landscape gradients at small extents (200 m); (2) a negative, threshold response to urbanization was superior to a linear fit; and (3) no evidence of time-lagged effects of landscape change. Interestingly, the form of our model (i.e. linear versus threshold) influenced the extent at which strongest effects were detected. Multivariate models relating the specialization index as well as obligate and facultative species richness to landscape gradients showed evidence of annual variability (i.e. composition, parameter estimates, and variability explained) that did not depend upon an organism’s degree of specialization. Our results provide evidence that violations of common assumptions (e.g. selection of appropriate extent, lack of time-lagged effects, etc.) can impact the outcome of DLMs, which could lead to inter-study inconsistencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.