Abstract
High severity crashes are one of the negative consequences of suburban transportation for a range of factors. Fatalities, injuries, and medical costs, as well as road and car damage and mental side effects, are more important consequences of severe crashes. The goal of this research is to figure out what factors contribute to different crash severity levels, in order to reduce the likelihood of such crashes. This study is unique in that it tries to investigate the capabilities of various discrete choice methods in order to explore which one performs best given the current database and research restrictions. Furthermore, the data fusion approach allows this study to take advantage of a wide range of characteristics that influence crash severity. To achieve this objective, the current study used several types of discrete choice models, such as ordered logit (OL), multinominal logit (MNL), and mixed logit (ML) models, to examine the factors influencing the severity of crashes in the suburban highway area. The data are related to crashes and traffic counters in Khorasan Razavi province in the northeast of Iran. Spatial‐temporal analysis of crash data with a data fusion approach has been conducted to prepare a multisource data set with a wide spectrum of independent variables to acquire reliable results using logit models. Independent descriptive variables include geometric design, time‐related, weather and environmental conditions, land use, traffic attributes, vehicle characteristics, and driver characteristics. ML provided the best fit with the available data set when compared to other discrete choice techniques. In addition, in all three logit models, coefficients of geometric design, vehicle characteristics, driver characteristics, land use, and weather and environmental conditions are significant, demonstrating the significance of using multisource data in defining factors impacting crash severity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.