Abstract
Aiming at the problem of spatial focus regions distribution dispersion and dislocation in feature pyramid networks and insufficient feature dependency acquisition in both spatial and channel dimensions, this paper proposes a spatial-temporal aggregated shuffle attention for video instance segmentation (STASA-VIS). First, an mixed subsampling (MS) module to embed activating features from the low-level target area of feature pyramid into the high-level is designed, so as to aggregate spatial information on target area. Taking advantage of the coherent information in video frames, STASA-VIS uses the first ones of every 5 video frames as the key-frames and then propagates the keyframe feature maps of the pyramid layers forward in the time domain, and fuses with the non-keyframe mixed subsampled features to achieve time-domain consistent feature aggregation. Finally, STASA-VIS embeds shuffle attention in the backbone to capture the pixel-level pairwise relationship and dimensional dependencies among the channels and reduce the computation. Experimental results show that the segmentation accuracy of STASA-VIS reaches 41.2%, and the test speed reaches 34FPS, which is better than the state-of-the-art one stage video instance segmentation (VIS) methods in accuracy and achieves real-time segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.