Abstract

In Focus: Vindstad, O. P. L., Jepsen, J. U., Yoccoz, N. G., Bjørnstad, O. N., Mesquita, M. d. S., & Ims, R. A. (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Journal of Animal Ecology, 88, 1134-1145. https://doi.org/10.1111/1365-2656.12959. Spatial synchrony of population dynamics is a common phenomenon, but the understanding of underlying mechanisms is supported more by theoretical than empirical studies. Vindstad etal. (2019) use a 19-year dataset on two moth species to disentangle the effects of different drivers of dispersal on thesynchrony of populations. They show that geographic distance, species dispersal capabilities, a dispersal barrier and the prevailing wind direction are all factors that influence spatial synchrony. With current climate change and ongoing habitat fragmentation, understanding how dispersal influences spatial synchrony of population fluctuations, and the effect on population viability, is essential to predict future impacts on our ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.