Abstract

ABSTRACTAs we realize that we spend most of our time in increasingly complex indoor environments, applications to assist indoor activities (e.g. guidance) have gained a lot of attention in the recent years. The advances in ubiquitous computing made possible the development of several spatial models intending to support context-aware and fine-grained indoor navigation systems. However, the available models often rely on simplified representations (e.g. 2D plans) and ignore the indoor features (e.g. furniture), thereby missing to reflect the complexity of the indoor environment. In this paper, we introduce the Flexible Space Subdivision framework (FSS) that allows to automatically identify the spaces that can be used for indoor navigation purpose. We propose a classification of indoor objects based on their ability to autonomously change location and we define a spatial subdivision of the indoor environment based on the classified objects and their functions. The framework can consider any 3D indoor configuration, the static and dynamic activities it hosts and it enables the possibility to consider all types of locomotion (e.g. walking, flying, etc.). It relies on input 3D models with geometric, semantic and topological information and identifies a set of subspaces with dedicated properties. We assess the framework against criteria defined in previous researches and we provide an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.