Abstract

The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the niches available for microbes to colonize. We present a high-resolution analysis of the structure of the gut microbiome in the Mormon cricket Anabrus simplex, an insect known for its periodic outbreaks in the western United States and nutrition-dependent mating system. The Mormon cricket microbiome was dominated by 11 taxa from the Lactobacillaceae, Enterobacteriaceae, and Streptococcaceae. While most of these were represented in all gut regions, there were marked differences in their relative abundance, with lactic-acid bacteria (Lactobacillaceae) more common in the foregut and midgut and enteric (Enterobacteriaceae) bacteria more common in the hindgut. Differences in community structure were driven by variation in the relative prevalence of three groups: a Lactobacillus in the foregut, Pediococcus lactic-acid bacteria in the midgut, and Pantoea agglomerans, an enteric bacterium, in the hindgut. These taxa have been shown to have beneficial effects on their hosts in insects and other animals by improving nutrition, increasing resistance to pathogens, and modulating social behavior. Using PICRUSt to predict gene content from our 16S rRNA sequences, we found enzymes that participate in carbohydrate metabolism and pathogen defense in other orthopterans. These were predominately represented in the hindgut and midgut, the most important sites for nutrition and pathogen defense. Phylogenetic analysis of 16S rRNA sequences from cultured isolates indicated low levels of divergence from sequences derived from plants and other insects, suggesting that these bacteria are likely to be exchanged between Mormon crickets and the environment. Our study shows strong spatial variation in microbiome community structure, which influences predicted gene content and thus the potential of the microbiome to influence host function.

Highlights

  • Insects are the most speciose and abundant taxa in the animal kingdom, playing a key ecological role in many of the world’s ecosystems

  • Field and laboratory-raised individuals shared 7 of the 11 sequence variants, including the most abundant Pediococcus acidilactici OTU that varied with mating status in a previous study (P. acidilactici 102222; Smith et al, 2016)

  • Variation in morphology and physiology is thought to differentiate niches within the gut that influence the organization of the microbiome

Read more

Summary

Introduction

Insects are the most speciose and abundant taxa in the animal kingdom, playing a key ecological role in many of the world’s ecosystems. Symbioses between insects and their microbial associates has undoubtedly contributed to their success, providing the capability to degrade recalcitrant food, to supplement nutrient-deficient diets, to protect them from their natural enemies, and to modulate the expression of social behavior (Engel and Moran, 2013; Douglas, 2015). Dense bristle-like structures in the ileum (Woodring and Lorenz, 2007) and rectal papillae (Hunt and Charnley, 1981) provide attachment sites for bacteria, some of which fix nitrogen (Tai et al, 2016), degrade recalcitrant plant polymers (Kaufman and Klug, 1991; Engel and Moran, 2013), and prevent infection (Dillon and Charnley, 2002)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call