Abstract

BackgroundGut microbes can contribute to their hosts in food digestion, nutrient absorption, and inhibiting the growth of pathogens. However, only limited studies have focused on the gut microbiota of freshwater snails. Pomacea canaliculata is considered one of the worst invasive alien species in the world. Elucidating the diversity and composition of the microbiota in the gut of P. canaliculata snails may be helpful for better understanding the widespread invasion of this snail species. In this study, the buccal masses, stomachs, and intestines were isolated from seven P. canaliculata snails. The diversity and composition of the microbiota in the three gut sections were then investigated based on high-throughput Illumina sequencing targeting the V3-V4 regions of the 16S rRNA gene.ResultsThe diversity of the microbiota was highest in the intestine but lowest in the buccal mass. A total of 29 phyla and 111 genera of bacteria were identified in all of the samples. In general, Ochrobactrum, a genus of putative cellulose-degrading bacteria, was the most abundant (overall relative abundance: 13.6%), followed by Sediminibacterium (9.7%), Desulfovibrio (7.8%), an unclassified genus in the family Aeromonadaceae (5.4%), and Cloacibacterium (5.4%). The composition of the microbiota was diverse among the different gut sections. Ochrobactrum (relative abundance: 23.15% ± 7.92%) and Sediminibacterium (16.95 ± 5.70%) were most abundant in the stomach, an unclassified genus in the family Porphyromonadaceae (14.28 ± 7.29%) and Leptotrichia (8.70 ± 4.46%) were highest in the buccal mass, and two genera in the families Aeromonadaceae (7.55 ± 4.53%) and Mollicutes (13.47 ± 13.03%) were highest in the intestine.ConclusionsThe diversity and composition of the microbiome vary among different gut sections of P. canaliculata snails. Putative cellulose-degrading bacteria are enriched in the gut of P. canaliculata.

Highlights

  • Gut microbes can contribute to their hosts in food digestion, nutrient absorption, and inhibiting the growth of pathogens

  • Gut microbiota may play roles in food digestion, absorption and metabolism in humans and other animals [4, 5]; microbiota-derived lactate can activate the production of reactive oxygen species and shorten the lifespan of Drosophila [6]; and microbiota can regulate midgut homeostasis to prevent the systemic infection of mosquitoes by inducing the peritrophic matrix [7]

  • We investigated the diversity and composition of the microbiota in different gut sections of P. canaliculata snails using high-throughput Illumina sequencing targeting the V3-V4 regions of the 16S rRNA gene

Read more

Summary

Introduction

Gut microbes can contribute to their hosts in food digestion, nutrient absorption, and inhibiting the growth of pathogens. Only limited studies have focused on the gut microbiota of freshwater snails. Elucidating the diversity and composition of the microbiota in the gut of P. canaliculata snails may be helpful for better understanding the widespread invasion of this snail species. Because of its high adaptability, strong fecundity, diverse diet and lack of efficient predators, P. canaliculata is widely distributed in tropical and subtropical areas worldwide [1].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call