Abstract

The Cooper pair is generally analyzed in momentum space, but its real-space structure also follows directly from the BCS theory. It is shown here that this leads to a spherically symmetrical quasi-atomic wavefunction, with an identical "onion-like" layered structure for each of the electrons constituting the Cooper pair, with charge layers ~ 0.1 nm and a radius ~ 100 nm for a classic BCS superconductor. This charge modulation induces a corresponding charge modulation in the background ionic lattice, and the attractive interaction between these two opposite charge modulations produces the binding energy of the Cooper pair. This physically-based interaction potential is similar to that in the simple BCS approximation. The implications of this real-space picture for understanding conventional and exotic superconductors are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.