Abstract

Studies of room-temperature ionic liquids showed that electrical diffuse layers in these highly concentrated electrolytes may exhibit spatially extended nonmonotonic (oscillatory) and monotonic decays. These unconventional properties are fundamentally different from traditional (dilute) electrolytes and demonstrate the limited mechanistic understanding of highly concentrated electrolytes. Moreover, electrolyte behavior placed in close proximity of two charged surfaces becomes even more unclear due to the possible overlap between diffuse layers. The latter is important as many applications require confinement into narrow spaces, e.g., energy and lubrication related applications. To advance the understanding of electrical diffuse layers in highly concentrated electrolytes (and ionic liquids) we use a semiphenomenological modified Poisson–Nernst–Planck equation and regulate weak dilutions. Using spatial dynamics methods and numerical computations, we analyze distinct diffuse layer characteristics (nonmonoton...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.