Abstract

In this study we analyzed the spatial structure of ectomycorrhizal fungi present in the soils as resistant propagules (e.g. spores or sclerotia) in a mixed-conifer forest in the Sierra Nevada, California. Soils were collected under old-growth Abies spp. stands across approximately 1 km and bioassayed with seedlings of hosts that establish best in stronger light (Pinus jeffreyi) or that are shade-tolerant (Abies concolor). Ectomycorrhizal fungi colonizing the roots were characterized with molecular techniques (ITSRFLP and DNA sequence analysis). Wilcoxina, five Rhizopogon species and Cenococcum were the most frequent of 17 detected species. No spatial structure was detected in the resistant propagule community as a whole, but P. jeffreyi seedlings had higher species richness and associated with seven Rhizopogon species that were not detected on A. concolor seedlings. We drew two conclusions from comparisons between this study and a prior study of the ectomycorrhizal community on mature trees in the same forest: (i) the resistant propagule community was considerably simpler and more homogeneous than the active resident community across the forest and (ii) Cenococcum and Wilcoxina species are abundant in both communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.