Abstract
Thionins are the family of small (∼5 kDa) cationic cysteine-rich peptides involved in the immune response in plants. Viscotoxin A3 (VtA3) is the thionin from mistletoe (Viscum album) demonstrating antimicrobial and cytotoxic activity against cancer cells in vitro. VtA3 (charge +6) interacts with the membranes containing anionic lipids and forms cation-selective ion channels. Here we studied the VtA3 structure in membrane-mimicking media by NMR spectroscopy. Spatial structure of VtA3, consisting of a helical hairpin and a short β-sheet, was stable and did not undergo significant changes during micelle binding. VtA3 molecule bound with high affinity to the surface of zwitterionic dodecylphosphocholine (DPC) micelle by hydrophobic patch in the helical hairpin. Oligomerization of VtA3 was observed in the anionic micelles of sodium dodecylsulphate (SDS). No direct contacts between the peptide molecules were observed and the possible interfaces of detergent-assisted oligomerization were revealed. The data obtained suggest that the VtA3 membrane activity, depending on the concentration, obeys the ‘toroidal’ pore model or the ‘carpet’ mechanism. The model of the membrane disrupting complex, which explains the ion channel formation in the partially anionic membranes, was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.