Abstract
Abstract. The paper employs the frame of a 1-D inhomogeneous model of space plasma,to examine the spatial structure and growth rate of drift mirror modes, often suggested for interpreting some oscillation types in space plasma. Owing to its coupling with the Alfvén mode, the drift mirror mode attains dispersion across magnetic shells (dependence of the frequency on the wave-vector's radial component, kr). The spatial structure of a mode confined across magnetic shells is studied. The scale of spatial localization of the wave is shown to be determined by the plasma inhomogeneity scale and by the azimuthal component of the wave vector. The wave propagates across magnetic shells, its amplitude modulated along the radial coordinate by the Gauss function. Coupling with the Alfvén mode strongly influences the growth rate of the drift mirror instability. The mirror mode can only exist in a narrow range of parameters. In the general case, the mode represents an Alfvén wave modified by plasma inhomogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.