Abstract

BackgroundSubsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study.Methodology/Principal FindingsWe conducted a transect of biogeochemical measurements and gene expression related to methane- and sulfur-cycling at different sediment depths across a broad Beggiatoa spp. mat at Mississippi Canyon 118 (MC118) in the Gulf of Mexico. High process rates within the mat (∼400 cm and ∼10 cm from the mat's edge) contrasted with sharply diminished activity at ∼50 cm outside the mat, as shown by sulfate and methane concentration profiles, radiotracer rates of sulfate reduction and methane oxidation, and stable carbon isotopes. Likewise, 16S ribosomal rRNA, dsrAB (dissimilatory sulfite reductase) and mcrA (methyl coenzyme M reductase) mRNA transcripts of sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae) and methane-cycling archaea (ANME-1 and ANME-2) were prevalent at the sediment surface under the mat and at its edge. Outside the mat at the surface, 16S rRNA sequences indicated mostly aerobes commonly found in seawater. The seep-related communities persisted at 12–20 cm depth inside and outside the mat. 16S rRNA transcripts and V6-tags reveal that bacterial and archaeal diversity underneath the mat are similar to each other, in contrast to oxic or microoxic habitats that have higher bacterial diversity.Conclusions/SignificanceThe visual patchiness of microbial mats reflects sharp discontinuities in microbial community structure and activity over sub-meter spatial scales; these discontinuities have to be taken into account in geochemical and microbiological inventories of seep environments. In contrast, 12–20 cm deep in the sediments microbial communities performing methane-cycling and sulfate reduction persist at lower metabolic rates regardless of mat cover, and may increase activity rapidly when subsurface flow changes.

Highlights

  • In deep-sea hydrocarbon seeps, fluids that originate from thermal maturation of deeply buried fossil organic carbon seep into the upper sediment column, where they often solidify into methane-rich hydrates and may contribute to global climate forcing in episodic releases [1,2]

  • Are the edges of a mat associated with diminished seepage rates that gradually transition to no seep influence in sediments some distance away from the mat? Or is the transition from seep-influenced to non-seep-influenced sediments and associated microbial communities abrupt, indicating a focused subsurface flow? since microbial mats cover only a fraction of the seafloor even at active seep sites, what can be inferred about the patchiness and distribution of seepageassociated microbial processes, such as methanogenesis, sulfate reduction, sulfate-dependent methane oxidation? We explored the relationship between geochemical activity measurements, and genetic analysis of the active microbial community with depth at different locations across a large (,10 meter diameter, Fig. 1a) Beggiatoa spp. mat at a hydrocarbon seep in the Gulf of Mexico (Mississippi Canyon 118) (Fig. 1b)

  • The measured sulfate reduction rates cannot account for the shallow sulfate depletion depth: a 1-D, steady-state, reaction-transport model for sulfate using measured rates predicts that sulfate penetrates to .15 cm (Figure S1)

Read more

Summary

Introduction

In deep-sea hydrocarbon seeps, fluids that originate from thermal maturation of deeply buried fossil organic carbon seep into the upper sediment column, where they often solidify into methane-rich hydrates and may contribute to global climate forcing in episodic releases [1,2]. Deep-source fluids and hydrates are transformed in surface sediments by highly active, benthic microbial ecosystems, which determine gas emissions and drive carbonate formation through methanogenesis, or sulfate reduction coupled to hydrocarbon oxidation [8,9,10]. The products of these anaerobic microbial processes, such as sulfide, incompletely oxidized organic compounds or dissolved inorganic carbon (DIC), are suitable substrates for sulfide-oxidizing Beggiatoa spp. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call