Abstract
SUMMARY Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler, have provided a Bayesian inference machine in image analysis and in other areas of spatial statistics for several years, founded on the pioneering ideas of Ulf Grenander. More recently, the observation that hyperparameters can be included as part of the updating schedule and the fact that almost any multivariate distribution is equivalently a Markov random field has opened the way to the use of MCMC in general Bayesian computation. In this paper, we trace the early development of MCMC in Bayesian inference, review some recent computational progress in statistical physics, based on the introduction of auxiliary variables, and discuss its current and future relevance in Bayesian applications. We briefly describe a simple MCMC implementation for the Bayesian analysis of agricultural field experiments, with which we have some practical experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.