Abstract

AbstractIn a companion paper,1 equations of motion and closed‐form solutions for spatial stability and free vibration analysis of shear flexible thin‐walled elastic beams were analytically derived from the linearized Hellinger–Reissner principle. In this paper, elastic and geometric stiffness matrices and consistent mass matrix for finite element analysis are evaluated by using isoparametric and Hermitian interpolation polynomials. Isoparametric interpolation functions with 2, 3 and 4 nodes per element are utilized in isoparametric beam elements, and in Hermitian beam elements, the third‐ and fifth‐order Hermitian polynomials including shear deformation effects are newly derived and applied for the calculation of element matrices. In order to verify the validity of the finite element formulation, both analytic and numerical solutions for spatial buckling and free vibration problems including shear effects are presented and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.