Abstract
Conventional energy detection is a robust method that is usually applied to underwater broadband acoustic signal processing for towed arrays. Due to its low resolution, the weak target detection performance of conventional energy detection is severely degraded in shallow sea environments with strong acoustical reverberation. Subband peak energy detection is an effective method to improve the display resolution of conventional energy detection. However, subband peak energy detection produces false alarms due to the presence of high sidelobe levels. In order to improve the underwater target detection performance, a deconvolved subband peak energy detection method for towed arrays is proposed in this paper. Compared with conventional beamforming, minimum-variance distortionless response with forward–backward averaging and diagonal loading algorithm and subband peak energy detection, the proposed method could robustly provide higher-resolution results and suppress the fake peaks induced by subband peak energy detection. The performance of the proposed method was evaluated with simulation results, and the sea experimental data processing results show that the proposed method is effective in engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.