Abstract

Photoreceptors exhibit complex regulation of many aspects of growth and development, including developmental-, spatial- and temporal-specific photoregulatory responses. Such diverse regulation has been noted for all major classes of photoreceptors in plants, including red/far-red (R/FR) absorbing phytochromes and blue/UV-A (B/UV-A) light-absorbing cryptochromes and phototropins. However, the most insight into spatiotemporal responses has been reported for phytochromes both at the physiological and, more recently, at the molecular levels. Through tissue-specific degradation of the phytochrome chromophore, my laboratory recently demonstrated that phytochromes exhibit light-dependent, spatiotemporal control over de-etiolation responses in Arabidopsis thaliana. Mesophyll-localized phytochrome A (phyA) controls numerous far-red high irradiance responses (FR-HIR) in Arabidopsis. Meristem- and/or leaf primordia-localized phytochromes are involved in the regulation of leaf development. In this addendum, I provide additional novel evidence for spatial-specific, blue-light-dependent signaling roles of phytochromes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.