Abstract

We consider some features of spatial solitary-wave switching in a unidirectional ring cavity that is partially filled with a fast and saturably self-focusing nonlinear medium. Large (part-beam switched) solitary arrays are considered. It is found that prescribed binary patterns may be encoded in the duration of a single cavity transit and subsequently remain stable over thousands of transits. Beam interrupt allows pixels to be switched off in fewer than ten cavity transits. Pixel instabilities on an unpixelated beam are shown to arise from spatial solitary attractive forces and intensity gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call