Abstract
We developed an approach to estimate snow water equivalent (SWE) through interpolation of spatially representative point measurements using a k-nearest neighbors (k-NN) algorithm and historical spatial SWE data. It accurately reproduced measured SWE, using different data sources for training and evaluation. In the central-Sierra American River basin, we used a k-NN algorithm to interpolate data from continuous snow-depth measurements in 10 sensor clusters by fusing them with 14 years of daily 500-m resolution SWE-reconstruction maps. Accurate SWE estimation over the melt season shows the potential for providing daily, near real-time distributed snowmelt estimates. Further south, in the Merced-Tuolumne basins, we evaluated the potential of k-NN approach to improve real-time SWE estimates. Lacking dense ground-measurement networks, we simulated k-NN interpolation of sensor data using selected pixels of a bi-weekly Lidar-derived snow water equivalent product. k-NN extrapolations underestimate the Lidar-derived SWE, with a maximum bias of −10 cm at elevations below 3000 m and +15 cm above 3000 m. This bias was reduced by using a Gaussian-process regression model to spatially distribute residuals. Using as few as 10 scenes of Lidar-derived SWE from 2014 as training data in the k-NN to estimate the 2016 spatial SWE, both RMSEs and MAEs were reduced from around 20–25 cm to 10–15 cm comparing to using SWE reconstructions as training data. We found that the spatial accuracy of the historical data is more important for learning the spatial distribution of SWE than the number of historical scenes available. Blending continuous spatially representative ground-based sensors with a historical library of SWE reconstructions over the same basin can provide real-time spatial SWE maps that accurately represents Lidar-measured snow depth; and the estimates can be improved by using historical Lidar scans instead of SWE reconstructions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.