Abstract

The ability to sense occasionally occurring sounds in an environment is critical for animals. To understand this ability, we studied responses to acoustic oddball paradigms in the rat’s midbrain auditory neurons. An oddball paradigm is a random sequence of stimuli created using two tone bursts, with one presented at a high probability (standard stimulus) and the other at a low probability (oddball stimulus). The sounds were either colocalized at the ear contralateral to a neuron under investigation (c90° azimuth) or separated with one at c90° while the other at another azimuth. We found that most neurons generated stronger responses to a sound at c90° when it was presented as an oddball than as a standard stimulus. Relocating one sound from c90° to another azimuth changed both responses to the relocated sound and the sound that remained at c90°. Most notably, the response to an oddball stimulus at c90° was increased when a standard stimulus was relocated from c90° to a location that was in front of the animal or on the ipsilateral side of recording. The increase was particularly large in neurons that displayed transient firing under contralateral stimulation but no firing under ipsilateral stimulation. These neurons likely play a particularly important role in using spatial cues to detect occasionally occurring sounds. Results suggest that effects of spatial separation between two sounds of an oddball paradigm on responses to the sounds were dependent on changes in the level of adaptation and binaural inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call