Abstract

We report on the experimental observation of the diffraction pattern formed in the far-field region when a high-power continuous-wave laser convergent or divergent Gaussian beam passes through a cuvette with ferrofluid. Two different types of diffraction rings with opposite light-intensity distribution are shown in the far field. The difference between the diffractive patterns is attributed to the interaction of the strong spatial self-phase modulation caused by the refractive index change of the medium with wavefront curvature of the input Gaussian beam. The observed behavior of the diffraction pattern dynamics is interpreted theoretically based on the Fresnel-Kirchhoff integral. The negative polarity of nonlinear refraction can be identified by the central interference profiles and the diffraction pattern. At the same time, the self-defocusing phenomena of the ferrofluid can be determined by the type of pattern. The nonlinear refraction coefficients of the ferrofluid were estimated to be ∼-2.89×10-5cm2/W (convergent Gaussian beam) and ∼-3.53×10-5cm2/W (divergent Gaussian beam). In addition, the corresponding third-order nonlinear optical susceptibility of the sample was also estimated as ∼1.43×10-5esu and ∼1.75×10-5esu, respectively. The experimental results imply a novel potential application of ferrofluid in nonlinear phase modulation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.