Abstract

Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems.

Highlights

  • In terrestrial ecosystems, various functional groups of rootassociated fungi interact with plants [1]

  • operational taxonomic units (OTUs) representing less than 5% of the sample-total reads were excluded from each sample to reduce among-sample variance in a-diversity that resulted from variance in sequencing effort

  • After removing seedling samples with less than 20 pyrosequencing reads, those with internal transcribed spacer (ITS) reads of plants other than Quercus, and OTUs representing less than 5% of the sample-total reads, the binary data matrix of the fungal community included 319, 274 and 242 OTUs with 97, 95 and 93%-cutoff similarities, respectively (Data S2)

Read more

Summary

Introduction

Various functional groups of rootassociated fungi interact with plants [1]. Diverse clades of root endophytic fungi, which do not form mycorrhizae, interact with diverse phylogenetic groups of plants [11,12] Some clades of those endophytic fungi are known to enhance the nutritional conditions of host plants [13,14], whereas many others inhabit plant roots as commensalistic symbionts or parasites [15]. Those different functional groups of root-associated fungi often cooccur in plant roots [16,17], and understanding the assembly processes of those ecologically and phylogenetically diverse fungi in root systems is one of the major challenges in fungal ecology. A morphological observation of fungal hyphae in roots revealed that ectomycorrhizal and root-endophytic fungi coexisted in a single root system of a Pinus tree, presumably because the two functional groups of fungi occupied different habitats within the roots [30]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call