Abstract
Habitat degradation in coastal ecosystems has resulted in the fragmentation of coastal aquatic vegetation and compromised their role in supplying essential ecological services such as trapping sediment or sequestering carbon. Fragmentation has changed seagrass architecture by decreasing the density of the canopy or engendering small patches of vegetated areas. This study aims to quantify the role different patch sizes of vegetation with different canopy densities have in the spatial distribution of sediment within a patch. To this aim, two canopy densities, four different patch lengths, and two wave frequencies were considered. The amounts of sediment deposited onto the bed, captured by plant leaves, remaining in suspension within the canopy, and remaining in suspension above the canopy were used to understand the impact hydrodynamics has on sediment distribution patterns within seagrass patches. In all the cases studied, patches reduced the suspended sediment concentrations, increased the capture of particles in the leaves, and increased the sedimentation rates to the bed. For the lowest wave frequency studied (0.5 Hz), the sediment deposited to the bottom was enhanced at canopy edges, resulting in spatial heterogeneous sedimentation patterns. Therefore, restoration and preservation of coastal aquatic vegetation landscapes can help face future climate change scenarios where an increase in sedimentation can help mitigate predicted sea level rise in coastal areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.