Abstract
We consider the problem of searching a general $d$-dimensional lattice of $N$ vertices for a single marked item using a continuous-time quantum walk. We demand locality, but allow the walk to vary periodically on a small scale. By constructing lattice Hamiltonians exhibiting Dirac points in their dispersion relations and exploiting the linear behaviour near a Dirac point, we develop algorithms that solve the problem in a time of $O(\sqrt N)$ for $d>2$ and $O(\sqrt N \log N)$ in $d=2$. In particular, we show that such algorithms exist even for hypercubic lattices in any dimension. Unlike previous continuous-time quantum walk algorithms on hypercubic lattices in low dimensions, our approach does not use external memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.