Abstract

High-spatial-resolution wind fields derived from synthetic aperture radar (SAR) instruments are crucial to a wide range of applications. However, the spatial scale effect on wind speed retrieval accuracy has seldom been reported. For the purpose of understanding this issue, this letter makes a quality assessment of wind speed retrieval accuracy based on four commonly used C-band geophysical model functions (CMOD4, CMOD-IFR2, CMOD5, and CMOD5.N) at spatial resolutions ranging from 50 m to 50 km using Sentinel-1 interferometric wide (IW) swath mode images. Our results show that the CMOD5 function is the most effective among these functions, owing to a low root-mean-square error (RMSE) of 1.17 m/s and a bias of −0.28 m/s for wind speed retrieval at a spatial resolution of 500 m. It is further observed that the variance of wind speeds retrieved from copolarized SAR images decreases exponentially with the decrease of spatial resolutions. For Sentinel-1 IW mode images, the variance of wind speeds retrieved with CMOD5 decreases rapidly from 50 to 500 m, with a drop in RMSE of 40%, and thereafter levels off. Thus, a spatial resolution of 500 m, with the CMOD5 function, is recommended optimal in this letter, for wind speed retrieval using Sentinnel-1 IW mode data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call