Abstract

Although cranberries ( Ait.) are indigenous to the northeastern United States, phosphorus (P) fertilizer additions and periodic flooding make commercial cranberry a potential source of P to the region's lakes and streams. In this study, we report values of P export in cranberry floodwaters that range from <0.8 to 4.7 kg P ha, generally reflecting differences in the hydrological, edaphic, and management factors underlying soil P transfer to floodwater. The relatively high P loading rate (4.7 P kg P ha) was associated with harvest flooding of organic-rich soils. Periods of winter flooding and the discharge of harvest floodwater from mineral soils resulted in relatively low P loss (<0.8 kg P ha). Increases in concentrations of total dissolved P (DP) and total particulate P (PP) in floodwater as stage decreased below the surface of the cranberry bed were consistent with the transport of dissolved P in soil porewater and mobilization of particulate P in ditches. Variations in floodwater DP, as well as conservative and reactive tracer concentrations, suggested that the processes by which soil P is released to porewater included desorption of near-surface soil P and anaerobic dissolution of iron-P compounds deeper in the soil profile. At the farm scale, concentrations of DP and PP steadily increased over time, presumably because drainage waters from beds farther upgradient had longer contact times with P-rich sources, such as soil porewater and ditch sediments. Overall, the study illustrates the role that scale-dependent processes impart on patterns of P loss in agricultural production systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.