Abstract

Abstract We consider convex risk measures in a spatial setting, where the outcome of a financial position depends on the states at different nodes of a network. In analogy to the theory of Gibbs measures in Statistical Mechanics, we discuss the local specification of a global risk measure in terms of conditional local risk measures for the single nodes of the network, given their environment. Under a condition of local law invariance, we show that a consistent local specification must be of entropic form. Even in that case, a global risk measure may not be uniquely determined by the local specification, and this can be seen as a source of “systemic risk”, in analogy to the appearance of phase transitions in the theory of Gibbs measures

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.