Abstract

The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon ( Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells ( n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells ( n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells ( n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.